CHAPTER TEN

THE STRAIGHT LINE

The gradient:

The gradient of a line which passes through the points (x_1 , y_1) and (x_2 , y_2) is given by $\frac{y_2 - y_1}{x_2 - x_1}$. The gradient is also called the slope.

Q1. Find the gradient of the line passing through the points (2, 5) and (7, 4).

Solution

Let
$$(x_1, y_1) = (2, 5) = x_1 = 2$$
 and $y_1 = 5$.

Also let
$$(x_2, y_2) = (7.4) => x_2, = 7$$
 and $y_2 = 4$.

The gradient
$$= y_2 - y_1$$
, $= \frac{4-5}{7-2} = \frac{-1}{5} = -0.2$.

Q2. Find the slope or the gradient of the line which joins the points (-5, 2) and (8, -4).

Solution

Let
$$(x_1, y_1) = (-5, 2) => x_1 = -5$$
 and $y_1, = 2$.

Also let
$$(x_2, y_2) = (8, -4)$$

$$=> x_2 = 8$$
 and $y_2 = -4$.

The slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - 2}{8 - (-5)} = \frac{-6}{8 + 5} = \frac{-0.46}{13}$$

Q3. Determine the slope of the line which joins the points (-2, -4) and (-6, -8).

Solution

Let
$$(x_1, y_1) = (-2, -4) \Rightarrow x_1 = -2$$
 and $y_1, = -4$.

Also let
$$(x_2, y_2) = (-6, -8) \Rightarrow x_2 = -6$$
 and $y_2 = -8$.

The gradient
$$= y_2 - y_1$$
, $= -8 - (-4)$ $= -8 + 4$ $= -4 = 1$. $x_2 - x_1$, $x_3 - x_4$

Q4. The gradient of the line which passes through the points (2,4) and (6,Q) is 2. Find the value of Q.

Let
$$(x_1, y_1) = (2,4) \Rightarrow x_1 = 2$$
 and $y_1 = 4$.

Also let
$$(x_2, y_2) = (6, Q) => x_2 = 6$$
 and $y_2 = Q$.

The gradient =
$$y_2 - y_1$$
, $x_2 - x_1$, $x_2 - x_1$

Since the graduate = 2, then
$$2 = \frac{Q-4}{6-2} > 2 = \frac{Q-4}{4}$$

$$=>2 \times 4 = Q - 4 => 8 = Q - 4$$

Q5. If the slope of the line which joins the points

(1, 6) and (m, -4) is 5, determine the value of m.

Solution

Let
$$(x_1, y_1) = (1, 6) \Rightarrow x_1 = 1$$
 and $y_1 = 6$.

Also let
$$(x_2, y_2) = (m, -4) => x_2 = m$$
 and $y_2 = -4$.

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1} = -\frac{4 - 6}{m - 1}$$

Since the slope = 5, then
$$5 = -4 - 6$$

 $m-1$

$$=>5(m-1)=-10$$

$$=> 5m = -5 => m = -5 = -1.$$

Q6. Find the slope of the line which passes through the points $(4, \frac{1}{2})$ and $(\frac{3}{4}, 6)$. Solution

$$\frac{1}{2} = 0.5$$
 and $\frac{3}{4} = 0.75$

Let
$$(x_1, y_1) = (4, 0.5) => x_1 = 4$$
 and $y_1 = 0.5$.

Also let
$$(x_2, y_2) = (0.75, 6) => x_2 = 0.75$$
 and $y_2 = 6$.

Slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 = $\frac{6 - 0.5}{0.75 - 4}$ = $\frac{5.5}{-3.25}$ = -1.7.

Q7. Determine the gradient of the line which joins the points $(\frac{1}{2}, \frac{1}{4})$ and $(\frac{2}{3}, \frac{3}{5})$.

Solution

Since
$$\frac{1}{2} = 0.2$$
, $\frac{1}{4} = 0.25$, $\frac{2}{3} = 0.66$ and $\frac{3}{5} = 0.6$, then

the line joins the points (0.2, 0.25) and (0.66, 0.6).

Let
$$(x_1, y_1) = (0.2, 0.25) \Rightarrow x_1 = 0.2$$
 and $y_1 = 0.25$.

Also let $(x_2, y_2) = (0.66, 0.6)$,

$$=> x_2 = 0.66$$
 and $y_2 = 0.6$.

The gradient =
$$y_2 - y_1$$
, = 0.6 - 0.25 = 0.35 = 0.8.

$$\overline{x_2 - x_1}$$
, $\overline{0.66 - 0.2}$ $\overline{0.46}$

Types of equations of straight line:

There are two types of equations of the straight line and these are (1) y = mx (2) y = mx + c

<u>Lines with equation of the form y = mx:</u>

- In the equation y = mx, m = the slope or the gradient.
- All such lines pass through the origin or the point (0, 0).
- Examples are lines with equations:

- (a) y = 2x, in which the slope is 2.
- (b) y = 5x in which the slope is 5.
- (c) y = -3x in which the gradient = -3.

<u>Lines with equation of the form y = mx + c:</u>

- In y = mx + c, m = the gradient and c = the y intercept i.e. the point where the graph or line cuts the y-axis.
- Examples of such line graphs are
- (1) y = 2x + 5, in which the slope is 2 and the y intercept is 5.
- (2) y = -3x + 4, in which the slope =-3 and the y intercept = 4.

The equation $y - y_1 = m(x - x_1)$:

- The equation of the straight line with slope m and which passes through the point (x_1, y_1) , is given by $y y_1 = m (x x_1)$.
- This equation is used when the slope of the line as well as one point through which the line passes are given.
- Q1. Find the equation of the line which passes through the point (4, 2) and whose slope is 5.

Solution

Since the slope is $5 \Rightarrow m = 5$. Let $(x_1, y_1) = (4, 2) \Rightarrow x_1 = 4$ and $y_1 = 2$. Using $y - y_1 = m(x - x_1)$ $\Rightarrow y - 2 = 5(x - 4)$, $\Rightarrow y - 2 = 5x - 20 \Rightarrow y = 5x - 20 + 2$, $\Rightarrow y = 5x - 18$.

Q2. Find the equation of the line whose gradient is 10, if it passes through the point (8, 4).

Solution

Since the gradient = $10 \Rightarrow m = 10$. Let $(x_1, y_1) = (8, 4) \Rightarrow x_1 = 8$ and $y_1 = 4$. Since $y - y_1 = m(x - x_1)$ $\Rightarrow y - 4 = 10(x - 8)$, $\Rightarrow y - 4 = 10x - 80$ $\Rightarrow y = 10x - 80 + 4$, $\Rightarrow y = 10x - 76$

Q3 Determine the equation of the line whose slope is -3, if it passes through the point (-4, 8).

Solution

The slope = -3 => m = -3. Let $(x_1, y_1) = (-4, 8) => x_1 = -4$ and $y_1 = 8$. Since $y - y_1 = m(x - x_1)$, then $y - 8 = -3 \{x - (-4)\}$, $=> y - 8 = -3\{x + 4\}$ => y - 8 = -3x - 12, => y = -3x - 12 + 8=> y = -3x - 4. Q4 Find the equation of the line whose slope is $\frac{2}{3}$ and passes through the point (5, 4).

Solution

The slope =
$$2/3 \Rightarrow m = 2/3 = 0.66$$
.
Let $(x_1, y_1) = (5, 4) \Rightarrow x_1 = 5$ and $y_1 = 4$.
Since $y - y_1 = m(x - x_1)$, then $y - 4 = 0.66$ $(x - 5)$, $\Rightarrow y - 4 = 0.66x - 3.3$, $\Rightarrow y = 0.66x - 3.3 + 4$, $\Rightarrow y = 0.66x + 0.7$.

Q5. A line which has a gradient of $^{-1}/_3$ passes through the point (- 6, -12). Determine its equation. Solution

```
The slope of the line = ^{-1}/_3 => m = ^{-1}/_3 = - 0.33.

Let (x_1, y_1) = (-6, -12) => x_1 = -6 and y_1 = -12.

But y - y_1 = m (x - x_1) => y - (-12) = - 0.33 (x - (-6)), => y + 12 = - 0.33 (x + 6) => y + 12 = - 0.33x - 1.98, => y = -0.33x - 1.98 - 12 => y = -0.33x - 1.98 - 12 => y = -0.33x - 1.98 - 12
```

Q6. Determine the equation of the line, whose slope is $^{-2}/_3$, if it passes through the point $(-1^1/_2, 1^1/_3)$.

.

Since the slope =
$$^{-2}/_3$$
 => m = $^{-2}/_3$ = - 0.66.
1 $^{1}/_2$ = $^{-3}/_2$ = -1.5 and 1 $^{1}/_3$ = $^{4}/_3$ = 1.33,

=> the line passes through the point (-1.5, 1.33).

Let
$$(x_1, y_1) = (-1.5, 1.33) \Rightarrow x_1 = -1.5$$
 and $y_1 = 1.33$.

From
$$y - y_1 = m (x - x_1)$$

$$\Rightarrow$$
 y - 1.33 = -0.66 {x - (-1.5)},

$$=> y - 1.33 = -0.66 (x + 1.5)$$

$$=> y - 1.33 = -0.66x - 0.99,$$

$$=> y = -0.66x - 0.99 + 1.33$$

$$=> y = -0.66x + 1.33 - 0.99,$$

$$=> y = -0.66x + 0.34$$
.

The equation
$$y - y_1 = y_2 - y_1 (x - x_1)$$

 $x_2 - x_1$

- This formula is used when the gradient is not given, but two points through which the line passes are given.
- Also in this given formula, $y_2 y_1$ = the slope.

$$x_2 - x_1$$

- Q1. Find the equation of the line which passes through the points (4, 2) and (5, 3).
 - Solution

Let
$$(x_1,y_1) = (4,2) \Rightarrow x_1 = 4$$
 and $y_1 = 2$.

Also let $(x_2, y_2) = (5, 3) \Rightarrow x_2 = 5$ and $y_2 = 3$.

But
$$y - y_1 = y_2 - y_1 \over x_2 - x_1$$
 (x - x₁)

$$\Rightarrow$$
 y-2 = $\frac{3-2}{5-4}$ (x-4)

$$=> y - 2 = \frac{1}{1}(x - 4)$$

$$=> y-2=1(x-4),$$

$$=> y-2 = x-4 => y = x-4+2$$

- => y = x 2.
- Q2. Find the equation of the line joining the points (-6, -2) and (-3, 4).

Solution

Let
$$(x_1,y_1) = (-6, -2) => x_1 = -6$$
 and $y_1 = -2$.

Also let
$$(x_2, y_2) = (-3, 4)$$

$$=> x_2 = -3$$
 and $y_2 = 4$.

Since
$$y - y_1 = y_2 - y_1 (x - x_1)$$

$$=> y - (-2) =$$

$$\frac{4 - (-2)}{-3 - (-6)} \{x - (-6)\}$$

$$=> y +2 = 4 + 2 (x + 6),$$

 $-3 + 6$

$$=> y + 2 = \frac{6}{3}(x + 6),$$

$$=> y + 2 = 2 (x + 6)$$

$$=> y + 2 = 2x + 12,$$

$$=> y = 2x + 12 - 2$$

- => y = 2x + 10.
- Q3. A line joins the points (-2, -6) and (-4, -1). Determine its equation.

Solution

Let
$$(x_1, y_1) = (-2, -6) => x_1 = -2$$
 and $y_1 = -6$.

Also let
$$(x_2, y_2) = (-4, -1)$$

$$=> x_2 = -4$$
 and $y_2 = -1$.

Since
$$y - y_1 = y_2 - y_1 (x - x_1)$$

 $x_2 - x_1$

then
$$y - (-6) = \frac{-1 - (-6)(x - -2)}{-4 - (-2)}$$

$$=> y + 6 = -1 + 6 (x + 2)$$

$$=> y + 6 = 5 (x + 2)$$

$$=> y + 6 = -2.5 (x + 2),$$

$$=> y + 6 = -2.5x - 5$$

 $=> y = -2.5x - 5 - 6$,
 $=> y = -2.5x - 11$.

Q4. Find the equation of the line which joins the points $(\frac{1}{2}, \frac{3}{4})$ and $(\frac{4}{5}, \frac{3}{10})$.

Solution

$$^{1}/_{2} = 0.5$$
, $^{3}/_{4} = 0.75$, $^{4}/_{5} = 0.8$ and $^{3}/_{10} = 0.3$,

=> the line joins the points (0.5, 0.75) and (0.8, 0.3).

Let $(x_1, y_1) = (0.5, 0.75)$

$$\Rightarrow$$
 x₁ = 0.5 and y₁ = 0.75.

Also let
$$(x_2, y_2) = (0.8, 0.3)$$

 $=> x_2 = 0.8$ and $y_2 = 0.3$.

Using
$$y - y_1 = y_2 - y_1 (x - x_1)$$

 $x_2 - x_1$

$$=> y - 0.75 = 0.3 - 0.75 (x - 0.5)$$

0.8 - 0.5

$$=> y - 0.75 = -0.45 (x - 0.5)$$

$$=> y - 0.75 = -1.5 (x - 0.5),$$

$$=> y - 0.75 = -1.5x + 0.75$$

$$=> y = -1.5x + 0.75 + 0.75,$$

$$=> y = -1.5x + 1.5.$$

Q5) Determine the equation of the line which joins the points $(^4/_5, -1^1/_4)$ and $(^3/_4, 1^1/_3)$.

Solution

$$^{-4}/_{5}$$
 = -0.8, -1 $^{1}/_{4}$ = $^{-5}/_{4}$ = -1.25, $^{-3}/_{4}$ = -0.75 and

$$1^{1}/_{3} = {4}/_{3} = 1.33$$

The line therefore joins the points (-0.8, -1.25) and

(-0.75, 1.33).

Let
$$(x_1, y_1) = (-0.8, -1.25)$$

$$=> x_1 = -0.8$$
 and $y_1 = -1.25$.

Also let
$$(x_2, y_2) = (-0.75, 1.33)$$

$$=> x_2 = -0.75$$
 and $y_2 = 1.33$.

From
$$y - y_1 = \frac{y_2 - y_1}{x_1 - x_2} (x - x_1)$$

From
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

=> $y - (-1.25) = \frac{1.33 - (-1.25)}{-0.75 - (-0.8)} \{x - (-0.8)\}$

$$=> y + 1.25 = \frac{1.33 + 1.25}{-0.75 + 0.8}(x + 0.8),$$

$$=> y + 1.25 = \frac{2.58}{0.05}(x + 0.8),$$

$$=> y + 1.25 = 52(y + 0.8)$$

$$\Rightarrow$$
 y + 1.25 = $\frac{2.58}{0.05}$ (x + 0.8)

$$=> y + 1.25 = 52 (x + 0.8),$$

$$=> y + 1.25 = 52x + 41.6$$

$$=> y = 52x + 41.6 - 1.25,$$

$$=> y = 52x + 40.4.$$